

SQXF Practice Coil Winding and Curing by LARP

Miao Yu 05/05/2014

Outline

- SQXF Coil 1 Winding and Curing Procedure
- Pole Gap and Wedge Gap
- Problem and Solution
- Summary
- Schedule

COIL 1 WINDING AND CURING PROCEDURE

Cable Re-spooling

- Insulation wrapping machine
- 4 pulleys with last pulley reverse bending the cable
- Tension is provided by caterpillar
- During re-spooling for total length measurement and cable inspection, mark the split location for IL and OL spools.

HiLumi-LHC/Quadrupole Development Workshop

Cable for Coil 1

- Cable# 1050Z, total length 168.5 m
- IL used 56 m and OL used 70.7 m cable.
- Ten stack measurements shows the cable is within dimension tolerance
- However, during winding we found non-uniformity of cable thickness
- For next coil, cable# 1051Z, during re-spooling, we will verify the cable thickness uniformity.

Cable thickness

Winding Mandrel Setup

- The distance from the tensioner to the winding table is 1.5 m.
- Fixed the position of LE pole anchor (23.163mm to the last LE mandrel block)
- Counter weight for L1 (OL spool weight)
- 125 μm Kapton tape on top of the mandrel

Coil Parts

Pole: align OL to IL with dowel pins

- Wedge: Cut both IL and OL wedges to the specified length. Insulate the wedges with 125 μm S2 glass sleeve, paint binder and cure at the ends.
- End parts: Visually check the coating, flexibility

Pre IL Winding

- Create pole gaps
- Mark the VT location on the pole
- Mark lines on LE and RE poles to indicate the region where to paint binder and cure the end.
- Prepare and install winding tooling
- Wrap 2 turns of S2 glass tape (175 μ m/layer) around poles starting from the ramp step.

Pre IL Winding

- Lay the cable on the transition side of the pole, and guide it through the ramp with the split mark as the reference.
- The rest of the S2 glass tape goes along with the cable for OL
- Use C-clamp to clamp the cable to Cable Ramp Clamping Plates
- Put the IL spool onto the tensioner with the thick edge of the conductor facing up and no twist. Put the OL spool on top of the winding tooling

IL Winding

- First two turns with winding tension 9 kg (20 lbs)
- Rotate mandrel and record the angle for each turn at both ends. Measure and record each turn location and angle at the ends
- Paint binder (CTD 1202) and cure each turn at the ends. Use the winding tool
- Install the VTs
- From turn 3, increase tension to 25 kg (55 lbs)
- Put one layer of 175 μm S2 glass tape in between each end part and the coil

IL Winding

- Use the alignment tool for each end spacer.
 - Without the tool, the flexible end parts shifted along the winding direction and poke into the cable insulation causing part to cable short
- Use Teflon and SS retainers to hold down the coil
- Use roller axle to push coil azimuthally.

L1 Packaging for Curing

- Install the pushers from LE Transition side toward RE
- Remove SS core
- Install the pushers from RE Nontransition side toward LE
- Paint 84 g binder (CTD-1202)
- Shrink wrap the coil using 19 mm (3/4"), 50 μm thick Mylar with 50% overlap
- Install the curing spacers
- Install the curing shims and curing retainers

to Curing mold

Coil Handling during W&C

- Crane + Slings to lift the coil and winding mandrel up from the winding table
- Install the spool support arm to the winding mandrel
- Attach the OL cable spool to the spool support arm
- Transfer to the rollover table and rotate 180 degree.
- Crane + Swivel D rings + Sling Hooks to lift the coil and put it inside the curing mold with alignment key bar.

L1 Curing

Mandrel Pressure:		500 psi	П	800 psi	Г	1300 psi	П	1550 psi	П	1800 psi
Platten Pressure:	П	700 psi	ď	1000 psi		1500 psi		1750 psi	П	2000 psi
Gap on Side:	A: [mm	<i>A</i> :	mm	<i>A</i> :	mm	<i>A</i> :	mm	<i>A:</i> [mm
	B: [mm	<i>B</i> :	mm	<i>B</i> :	mm	<i>B</i> :	mm	B: [mm

Coil stress ~ 10 MPa

After L1 Curing

- No electrical short
- Prepare smashed S2 glass
- Soak with the binder
- Fill the un-even surface of the last conductor group on both ends
- Cure with heat gun
- Prepare two layer cured S2 glass interlayer insulation ~0.5 mm thick. (Use 47g matrix (31 g/m) over 1.35 m interlayer insulation and leave 0.18 m LE dry.)

15

L2 Winding Setup

- Install L2 pole from RE using pins and screws
- Before pin and screw L2 LE pole, wrap 2 layers of 175 μm S2 Glass tape around L2 poles
- After pin and screw L2 LE pole, cut the insulation along the ramp edge
- Mark the VT location on the pole
- Mark lines on LE and RE poles to indicate the region where to paint binder and cure the end.

L2 Winding

- First two turns with 9 kg (20lbs) winding tension
- From turn 3, increase the tension to 25 kg (55 lbs)
- Rotate mandrel and record the angle for each turn at both ends. Measure and record each turn location and angle at the ends
- Put one layer of 175 μm S2 glass tape in between each end part and the coil
- Paint binder (CTD 1202) and cure each turn at the ends. Use the

winding tool

Install the VTs

• Use the alignment tool for each end spacer. Use Teflon and SS retainers to hold down the coil. Use roller axle to push coil azimuthally.

L2 Packaging and Handling

- Trim the interlayer insulation
- Install the pushers from LE Non-transition side toward RE
- Remove SS core
- Install the pushers from RE Transition side toward LE
- Paint 107 g binder (CTD-1202)
- Shrink wrap the coil using 19 mm (3/4"), 50 μm thick Mylar with 50% overlap
- Install the curing spacers
- Install the curing shims and curing retainers
- Coil handling is the same as L1
- Two alignment key bars to curing mold (key bars are screwed to the poles via lifting tap holes)

Binder CTD-1202

• **HQ**

- L1: 43.8 g, 38 m cable → \sim 1.157 g/m
- L2: 65.7 g, 48 m cable → \sim 1.38 g/m

Soft brush

LHQ

- L1: 140 g, 121 m cable → \sim 1.157 g/m \sim
- L2: 210 g, 152 m cable → \sim 1.38 g/m $\stackrel{>}{>}$ 1.25 g/m
- Interlayer insulation: 25g/m
- SQXF: 1.25x18.45/15.222 = 1.51 g/m
 - L1: **84 g**, 55.6 m cable
 - L2: **107 g**, 70.8 m cable
 - Interlayer insulation: 25x75/60 = 31g/m

L2 Curing

A CONTRACTOR OF THE PROPERTY OF	B:	mm		mm				mm	Г	mm
Gap on Side:	A:	mm	<i>A</i> :	mm	<i>A</i> :	mm	A:	mm	A: [mm
Platten Pressure:		700 psi		1000 psi		1500 psi		1750 psi		2000 psi
Mandrel Pressure:		500 psi	П	800 psi	\neq	1300 psi		1550 psi	П	1800 psi

Coil stress ~ 10 MPa

After L2 Curing

- No electrical short
- QA: coil resistance, Ls and Q value measurement
- Coil dimension measurement
- Release tension, and measurement the pole gap and wedge gap
- Prepare for shipping or reaction.

Coil Shipping after Curing

POLE GAP AND WEDGE GAP

HQ Pole Gap

Measurement Analysis: Pole Gap

Total pole gap contraction (cable relaxation + reaction)

- → Reproducibility (even with different cable)
- → Ti doped cable (coil 18) has a similar gap contraction than Ta coils (all other)
- → Difference in gap contraction after reaction likely due to the different type of insulation used.

SQXF Coil 1 Pole Gap

Pole Gap Measurements

HQ Wedge Gap

Wedge to spacer gap

Spacer/wedgegap (measured after winding/bef.

SQXF Coil 1 Wedge Gap

COIL 1 PROBLEM AND SOLUTION

Cable Re-spooling

Tension is provided by payout and respooler

Digital counter, measures in meters and tenths

Flexible end parts

- The flexible end parts shifted along the winding direction and poke into the cable insulation causing part to cable short
- Solution: Alignment tool (80/20 Al frame, threaded rod with one end machined down as a 3 mm pin, double nuts, and C-clamp). After using the tooling, no short happened again.

Layer jump

- After curing, the layer jump cable was over pushed by the curing spacer Solution: Four half shell curing spacers were returned to the vendor for rework remove material from mid-plane and add two alignment pin slots
 - ➤ Use pins to position the curing spacer
 - Use side pusher bars as stop bar

31

IL Voltage Taps

- Two VTs were broken due to the high pressure during curing.
 - ➤ No teflon tap and Mica, and shorten the VT flag
 - ➤ Move all the VTs to coil straight section

Remove SS Core

- Hard way bending the cable to remove the core.
- Solution: After installing one side pushers, turn off the tensioner, cut the cable, backwind the coil, remove the SS core, and then install the other side pushers.

Binder for Curing L2

- Separation between the wedge and the turn, and between the pole and the turn
- Solution: increase from 107 g to 120 g for the next coil

Summary

- SQXF coil 1 winding and curing was finished
- All the tooling was checked. Curing spacers need rework. Curing press will be upgrade after Coil 2
- The winding and curing procedure was followed through the fabrication. All the comments and modification will be updated for the next coil
- We are ready to fabricate Coil 2 which is planned as the mirror coil.

Schedule

